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ABSTRACT

Exploiting the sparsity of signals in an adaptive dictionary or trans-
form domain benefits various applications in image/video process-
ing. As opposed to synthesis dictionary learning, transform learning
allows for cheap computations, and has been demonstrated to per-
form well in applications such as image denoising. Very recently, we
proposed methods for online sparsifying transform learning, which
are particularly useful for processing large-scale or streaming data.
Online transform learning has good convergence guarantees and en-
joys a much lower computational cost than online synthesis dictio-
nary learning. In this work, we present a video denoising framework
based on online 3D spatio-temporal sparsifying transform learning.
The proposed scheme has low computational and memory costs,
and can potentially handle streaming video. Our numerical exper-
iments show promising performance for the proposed video denois-
ing method compared to popular prior or state-of-the-art methods.

Index Terms— Sparsifying transforms, Denoising, Online
learning, Sparse representations, Big data.

1. INTRODUCTION

Denoising is one of the most fundamental problems in signal pro-
cessing. The goal in denoising is to take corrupted signals, images
or video and process them to obtain clean or high-quality estimates.
This is especially useful for applications that require high-quality
signals and images such as medical imaging applications, surveil-
lance video, etc. The ubiquitous use of relatively low-quality smart
phone cameras has also led to the increasing importance of video
denoising.

Several methods have been proposed in the past for the denois-
ing of video data. Some of these methods are based on motion esti-
mation and compensation [1, 2]. In these methods, on top of spatial
similarity, temporal redundancy is exploited by filtering along the es-
timated motion trajectories. Other video denoising methods exploit
the sparsity of video data in some known transform domain or dic-
tionary such as the discrete cosine transform (DCT), or Wavelets, to
enable better noise attenuation [3, 4]. Non-local methods have also
become very popular in video denoising in recent years. Methods
such as VBM3D [5] and VBM4D [6] have been shown to provide ex-
cellent performance in video denoising. These methods also exploit
sparsifying transforms such as the DCT as part of their framework.

Recently, the adaptation of sparse models (such as the synthe-
sis dictionary model [7, 8], analysis dictionary model [9], or trans-
form model [10, 11]) based on training signals has received increas-
ing attention [9, 10, 12–17], and has been shown to be beneficial in
various applications including image or video denoising. While the
data-driven adaptation of synthesis dictionaries for the purpose of
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denoising video or 3D data [18, 19] has been studied in some recent
papers, the usefulness of learned sparsifying transforms has not been
explored in these applications.

In this work, we focus on video denoising and propose a novel
framework based on learned 3D sparsifying transforms. As opposed
to the synthesis dictionary model, where sparse coding is NP-hard
(Non-deterministic Polynomial-time hard) [20, 21], the transform
model has the advantage that sparse coding in the model can be per-
fomed exactly and cheaply by zeroing out all but a certain number of
non-zero transform coefficients of largest magnitude. The learning
of sparsifying transforms is typically much cheaper than synthesis,
or analysis dictionary learning [10,22]. Very recently, we introduced
the idea of online learning of sparsiying transforms for signals or
image patches [23, 24]. Online learning is particularly useful for big
data, and for applications such as real-time denoising, i.e., denois-
ing of streaming data. As opposed to batch transform learning [10],
where the transform is learnt using all the training data simultane-
ously, online transform learning has the advantage that it handles
(training) data sequentially, and involves much cheaper computa-
tions, and lower latency and memory requirements. It has also been
shown to be cheaper than online overcomplete synthesis dictionary
learning [23].

While we have shown the usefulness of online transform learn-
ing for large-scale image denoising [23], the usefulness of transform
learning (either online or batch) for video denoising has not been
explored. Moreover, video data typically have redundancy along
the time axis, which will not be captured by learning sparsifying
transforms for the 2D patches of the video frames. Therefore, in
this paper, we propose a novel online video denoising scheme based
on 3D sparsifying transform learning. Our framework iteratively
adapts the sparsifying transform and sparse codes for (overlapping)
3D (spatio-temporal) patches that are extracted sequentially from
groups of frames. Denoised versions of the 3D patches are esti-
mated in each iteration of our algorithm, and denoised versions of
the video frames are estimated by averaging the denoised 3D patches
at their respective spatio-temporal locations. Our numerical results
demonstrate the promising performance of the proposed method as
compared to well-known alternatives such as adaptive overcomplete
synthesis dictionary-based denoising [19], 3D DCT-based denoising,
or non-local methods including VBM3D [5], and VBM4D [6].

2. DENOISING PROBLEM FORMULATIONS

We briefly discuss the recently proposed formulations for denoising
based on online and mini-batch transform learning [23, 25].

2.1. Signal or Image Denoising by Online Transform Learning

The goal in denoising is to recover an estimate of a signal u from the
measurement y = u + e, corrupted by additive noise e. Here, we
consider a time sequence of measurements {yt}, with yt = ut + et,



and et ∈ Rn being the noise. We assume et whose entries are inde-
pendent and identically distributed (i.i.d.) Gaussian with zero mean
and variance σ2

t . The goal of online denoising is to recover estimates
of ut ∀ t. We model the underlying signals as approximately sparse
in an (unknown) transform domain.

In prior work [23], we proposed a denoising methodology
based on online sparsifying transform learning, where the trans-
form is adapted based on sequentially processed data. For time
t = 1, 2, 3, ..., the problem of updating the adaptive transform and
sparse code (i.e., the sparse representation in the adaptive transform
domain) to account for the new noisy signal yt ∈ Rn is

(P1)
{
Ŵt, x̂t

}
= argmin

W,xt

1

t

t∑
τ=1

{
∥Wyτ − xτ∥22 + λτν(W )

}
+

1

t

t∑
τ=1

α2
τ ∥xτ∥0 s.t. xτ = x̂τ , 1 ≤ τ ≤ t− 1

where ν(W ) = − log |detW | + ∥W∥2F is a transform learning
regularizer [10], λτ = λ0 ∥yτ∥22 with λ0 > 0, and the weights
ατ ∝ στ . The ∥·∥0 operation counts the number of non-zeros in a
vector or matrix. Matrix Ŵt in (P1) is the optimal transform at time
t, and x̂t is the optimal sparse code for yt. Note that at time t, only
the latest optimal sparse code x̂t is updated in (P1) 1 along with the
transform Ŵt. The condition xτ = x̂τ , 1 ≤ τ ≤ t− 1, is therefore
assumed. For brevity, we will not explicitly restate this condition (or,
its appropriate variant) in the formulations in the rest of this paper.

The regularizer ν(W ) in (P1) prevents trivial solutions and con-
trols the condition number and scaling of the learnt transform [10].
The condition number κ(W ) is upper bounded by a monotonically
increasing function of ν(W ). In the limit λ0 → ∞ (and assuming
the yτ , 1 ≤ τ ≤ t, are not all zero), the condition number of the
optimal transform in (P1) tends to 1, and its spectral norm tends to
1/

√
2. In practice, the transforms learnt via (P1) are well condi-

tioned for finite λ0 [23]. The specific choice of λ0 (i.e., condition
number) depends on the application.

A simple least-squares denoised signal estimate is obtained us-
ing (P1) at each time t as ût = Ŵ−1

t x̂t. Problem (P1) can also
be used for patch-based denoising of large images [23]. The over-
lapping patches of the noisy images are processed sequentially, and
the denoised image is obtained by averaging the denoised patches at
their respective image locations.

For non-stationary data, it may not be desirable to uniformly fit a
single transform W to all the yτ , 1 ≤ τ ≤ t, in (P1). We previously
proposed [23] to address this case by introducing a forgetting factor
ρt−τ (with a constant 0 < ρ < 1), that scales the terms in (P1).
Such a forgetting factor diminishes the influence of “old” data. The
objective function in (P1) is then modified as

1

t

t∑
τ=1

ρt−τ {∥Wyτ − xτ∥22 + λτν(W ) + α2
τ ∥xτ∥0

}
(1)

Another useful variation of Problem (P1) involves mini-batch
learning, where a block, or group, or mini-batch of signals is pro-
cessed at a time [23]. Assuming a fixed block size M , the Lth (L ≥
1) block of signals is YL =

[
yLM−M+1 | yLM−M+2 | ... | yLM

]
.

For L = 1, 2, 3, ..., the mini-batch sparsifying transform learning

1This is because only the signal yt is assumed to be stored in memory at
time t for the online scheme.

Fig. 1. A simple illustration of the proposed online video denoising
scheme by 3D sparsifying transform learning.

problem is

{
ŴL, X̂L

}
= argmin

W,XL

1

LM

L∑
j=1

{
∥WYj −Xj∥2F + Λj ν(W )

}
+

1

LM

L∑
j=1

M∑
i=1

α2
jM−M+i ∥xjM−M+i∥0 (P2)

where the regularizer weight is Λj = λ0 ∥Yj∥2F , and the matrix
XL =

[
xLM−M+1 | xLM−M+2 | ... | xLM

]
contains the

block of sparse codes corresponding to YL. A simple denoised es-
timate of the noisy block of signals in YL is obtained for each L as
ÛL = Ŵ−1

L X̂L. The mini-batch transform learning Problem (P2) is
a generalized version of (P1), with (P2) being equivalent to (P1) for
M = 1. Mini-batch learning can provide potential speedups over
the M = 1 case in applications, but this comes at the cost of higher
memory requirements and latency [23].

2.2. Online Video Denoising Framework

Prior work on adaptive sparsifying transform-based image denois-
ing [22, 23, 26] learnt the transform matrix from 2D image patches.
However, in video denoising, exploiting the sparsity and redundancy
in both the spatial and temporal dimensions typically leads to bet-
ter performance than denoising each frame separately [18, 19]. We
therefore propose online video denoising by sparsifying transform
learning on 3D spatio-temporal patches.

Fig. 1 illustrates the framework of our proposed online video
denoising scheme. The frames of the noisy video (assumed to be
corrupted by additive i.i.d. Gaussian noise) denoted as zτ ∈ Ra×b

arrive at τ = 1, 2, 3, etc. At time τ = t, the newly arrived
frame zt is added to a fixed-size FIFO (first in first out) buffer
that stores a block of m consecutive frames {zi}ti=t−m+1, and
the oldest frame zt−m is dropped. We denote this spatio-temporal
tensor data of frames stacked along the temporal dimension as
Gt =

[
zt−m+1 | zt−m+2 | ... | zt

]
, with Gt ∈ Ra×b×m. (For

t < m, the initial frames in Gt are set to all-zero frames.) The
partially overlapping n1 × n2 × n3 size 3D patches of Gt are ex-
tracted sequentially in a spatially and temporally contiguous order.
A spatio-temporal sparsifying transform is adapted in an online
manner, and used to denoise the 3D patches. Each noisy frame zt
arises once in each of the tensors in the set {Gj}t+m−1

j=t . Thus, the
denoised estimate (output) of each zt is computed by averaging the
corresponding denoised overlapping 3D patches from the m over-
lapping tensors at their respective 3D locations. As a result, there
is (at least) an m − 1 frame delay between the arrival of zt and the
generation of its final denoised estimate. In Fig. 1, Ĝt stores the
most up-to-date denoised estimate of each noisy frame (obtained



by averaging the denoised 3D patches from the overlapping tensors
processed so far) in Gt. Only the leftmost frame ẑt−m+1 in Ĝt

is output at time t, since all other frame estimates will be updated
further based on future Gτ ’s (τ > t).

We now discuss the formulation for sequentially denoising the
3D spatio-temporal patches in each Gt (for t = 1, 2, 3, etc.). Let
RiGt ∈ Rn (with n = n1n2n3, n3 ≤ m) denote the vector-
ized form of the ith 3D patch extracted from Gt (a total of P par-
tially overlapping patches are assumed for each Gt), with Ri being
a patch-extraction operator. We process a group, or mini-batch, of
M 3D patches at a time from Gt in 3D frame-major raster scan or-
der. To impose spatio-temporal contiguity of 3D patches from two
adjacent tensors, for each t, we reverse the raster scan order between
Gt and Gt+1. Let N be the total number of mini-batches in each Gt

(N = P/M ). Then, for a particular time t, we solve the following
transform learning problem for each k = 1, 2, 3, ..., N , to adapt the
transform and sparse codes based on the kth mini-batch in Gt{

ŴLk , X̂Lk

}
= argmin

W,XLk

1

LkM

Lk∑
j=1

ρLk−j {∥WYj −Xj∥2F
}

+
1

LkM

Lk∑
j=1

ρLk−j

{
Λj ν(W ) +

M∑
i=1

α2
j,i ∥Xj,i∥0

}
(P3)

where Lk , N × (t − 1) + k. In (P3), the matrix Yj =[
RlM−M+1Gq+1 | RlM−M+2Gq+1 | ... | RlMGq+1

]
∈ Rn×M ,

with q , ⌊j/N⌋ and l , j − qN , indexes the mini-batches pro-
cessed from the various Gτ , 1 ≤ τ ≤ t. The matrix Xj ∈ Rn×M

denotes the sparse codes corresponding to the mini-batch Yj , and
Xj,i denotes the ith column of Xj , whose sparsity weight in (P3)
is α2

j,i. Note that the factor LkM in (P3) denotes the total number
of 3D patches processed from all Gτ , 1 ≤ τ ≤ t. We use a for-
getting factor ρLk−j in (P3) to diminish the influence of old frames
or old mini-batches. Once (P3) is solved, the denoised version
of the current mini-batch of noisy signals is computed simply as
ÛLk = Ŵ−1

Lk
X̂Lk .

3. ALGORITHMS AND PROPERTIES

We refer to our video denoising methodology by solving (P3) as
VIDOLSAT (VIdeo Denoising by Online Learning of SpArsifying
Transforms). Our proposed method for (P3) involves a sparse coding
step and a transform update step [23]. This is followed by another
sparse coding step to improve the accuracy of the solution.

3.1. Sparse Coding

In the sparse coding step, we solve for X̂Lk in (P3) with fixed W =

ŴLk−1, as follows

X̂Lk = argmin
XLk

∥WYLk −XLk∥
2
F +

M∑
i=1

α2
Lk,i ∥XLk,i∥0 (2)

A solution in (2) is given as X̂Lk,i = ĤαLk,i(WYLk,i) ∀ i [23].

Here, the hard thresholding operator Ĥα(·) is defined as(
Ĥα(b)

)
p
=

{
0 , |bp| < α
bp , |bp| ≥ α

(3)

where b ∈ Rn, and the subscript p indexes vector entries. This sim-
ple hard thresholding operation for sparse coding is similar to tradi-
tional techniques involving analytical sparsifying transforms [27].

3.2. Transform Update

In the transform update step, we solve Problem (P3) for W with
fixed Xj = X̂j , 1 ≤ j ≤ Lk, as follows

min
W

1

LkM

Lk∑
j=1

ρLk−j {∥WYj −Xj∥2F + Λjν(W )
}

(4)

This problem has a closed-form solution (similar to Section III-B2
in [23]).

Define bk = LkM . Let PLk ∈ Rn×n be the square root of
b−1
k

∑Lk
j=1 ρ

Lk−j(YjY
T
j + ΛjI). Denoting the full singular value

decomposition (SVD) of P−1
Lk

ΘLk as QLkΣLkU
T
Lk

, with ΘLk =

b−1
k

∑Lk
j=1 ρ

Lk−jYjX
T
j , we then have that the closed-form solution

to (4) is

ŴLk = 0.5ULk

(
ΣLk +

(
Σ2

Lk
+ 2βLkI

) 1
2

)
QT

Lk
P−1
Lk

(5)

where I denotes the identity matrix, and (·)
1
2 denotes the posi-

tive definite square of a positive definite matrix. The quantities
ΓLk , b−1

k

∑Lk
j=1 ρ

Lk−jYjY
T
j , ΘLk , and βLk ,

∑Lk
j=1 b

−1
k Λj are

all computed sequentially over time [23].

3.3. Multi-pass Denoising

In order to further enhance the denoising performance, we perform
multiple passes of denoising for each Gt in our framework [26]. In
each pass, we construct the Yj’s in (P3) using the 3D patches ex-
tracted from the denoised estimates of the Gt’s from the previous
pass. As the sparsity penalty weights are set proportional to the noise
level, αj,i ∝ σ, the noise level σ in each such pass is set to an esti-
mate of the remaining noise in the denoised Gt’s from the previous
pass.

3.4. VIDOLSAT Properties

The per-frame computational cost of the proposed VIDOLSAT algo-
rithm is O(n2PK), where W ∈ Rn×n, P is the number of partially
overlapping patches in Gt, and K is the number of passes in the
multi-pass scheme. Assuming J ≫ nM/m (large videos), the pro-
posed algorithms have memory cost scaling as O(Jm), where m is
the number of frames in Gt, and J is the number of pixels in each
frame.

4. NUMERICAL EXPERIMENTS

In this section, we present preliminary results for our VIDOLSAT
algorithm 2. We work with the standard gray-scale videos Salesman
(288 × 352 × 50), Miss America (288 × 360 × 150), and Coast-
guard (144 × 176 × 300) (available at [28]), and simulate i.i.d.
Gaussian noise at 5 different noise levels (σ = 5, 10, 15, 20, 50)
for each video. We compare the denoising results obtained by our
VIDOLSAT algorithm to those obtained by popular methods such
as VBM3D [5], VBM4D [6], sparse K-SVD denoising [19], and
our own patch-based 3D DCT denoising (same as the VIDOLSAT
method, but uses 3D DCT instead of the learned transform). We used
the publicly available implementations of the sparse K-SVD [29],
VBM3D and VBM4D [28] algorithms.

2A Matlab implementation of VIDOLSAT that can reproduce these re-
sults is publicly available at http://www.ifp.illinois.edu/~yoram.



σ Salesman Miss America Coastguard

5

40.87 41.03 42.03 41.99 38.47 38.55

40.43 40.82 41.51 41.88 38.32 39.12

41.55 41.69 42.30 42.33 39.60 39.53

10

36.92 37.02 39.46 39.72 34.61 34.75

37.29 37.12 39.64 39.85 34.82 35.35

37.84 38.02 40.31 40.34 35.73 35.67

15

34.66 34.73 37.66 38.35 32.52 32.70

35.53 34.95 38.70 38.65 33.03 33.24

35.59 35.82 39.19 39.22 33.67 33.65

20

33.07 33.21 36.21 37.25 31.07 31.33

34.14 33.33 37.97 37.79 31.73 31.72

34.02 34.26 38.32 38.40 32.23 33.26

50

27.84 28.37 30.60 33.41 26.56 27.06

28.33 28.32 34.55 34.28 26.90 27.05

29.34 29.72 35.15 35.28 27.99 28.12

Table 1. Comparison of video denoising PSNR values (in dB) for
several methods. Top Left: Patch-based 3D DCT denoising; Top
Right: sparse K-SVD [19]; Middle Left: VBM3D [5]; Middle
Right: VBM4D [6]; Bottom Left: VIDOLSAT with n = 512; Bot-
tom Right: VIDOLSAT with n = 768. For each video and noise
level, the best denoising PSNR is marked in bold.

For our VIDOLSAT algorithms, we work with 8 × 8 × 8 (n =
512) and 8×8×12 (n = 768) overlapping 3D patches, with m = 8
(m = n3) and m = 12 respectively. We set spatial overlap stride
v = 1 for the 3D patches, λ0 = 1.0 × 10−2, M = 15 × n, and
αj,i = 1.9σ in our experiments. Other parameters such as ρ, K
(number of passes), and the estimated noise levels in each pass of
the multi-pass scheme were tuned empirically [23, 26]. For (fixed)
3D DCT based denoising, the setting αj,i = 2.45σ is used, which
was found to work well in our experiments.

To evaluate the performance of the various schemes, we measure
the denoised peak signal-to-noise ratio (PSNR) computed between
the noiseless reference and the denoised video. Table 1 lists the de-
noised PSNRs obtained by 3D DCT based denoising, sparse K-SVD
denoising, VBM3D, VBM4D, and VIDOLSAT with two different
temporal patch sizes. The VIDOLSAT algorithm with n = 512 pro-
vides average PSNR improvements in Table 1 of 1.35 dB, 0.89 dB,
0.66 dB, and 0.63 dB respectively over the 3D DCT, sparse KSVD,
VBM3D, and VBM4D denoising methods respectively. The corre-
sponding improvements provided by VIDOLSAT with n = 768 are
1.45 dB, 0.99 dB, 0.76 dB, and 0.72 dB, respectively. With either
patch size, VIDOLSAT provides better PSNRs than all of the com-
peting methods for almost all videos and noise levels. Thus our pro-
posed method demonstrates promising performance in video denois-
ing compared to popular competing methods. Moreover, VBM3D
and VBM4D are not capable of streaming operation, thus introduce
additional latency compared to the proposed online methods.

Figure 2 shows the frame-by-frame denoised PSNRs obtained
using the VIDOLSAT algorithm for the videos Miss America and
Salesman at σ = 15 and σ = 50, respectively, along with the
corresponding PSNR values for VBM3D and VBM4D. It is clear
that VIDOLSAT outperforms the competing methods for most of the
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Fig. 2. Frame-by-frame PSNR(dB) of the video (a) Miss America
with σ = 15, and (b) Salesman with σ = 50, denoised by the pro-
posed scheme VIDOLSAT (n = 512 and n = 768), VBM3D and
VBM4D, respectively.
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Fig. 3. One frame of Salesman denoising result: (a) Noisy frame
(PSNR = 14.13 dB), (b) Denoised frame using the proposed VIDOL-
SAT scheme with n = 768 (PSNR = 30.97 dB), (c) Magnitude of
error in the denoised frame obtained using VBM4D (PSNR = 27.20
dB), (d) Magnitude of error in (b).

frames. Figure 3 shows one frame of the denoised video Salesman
at σ = 50. Comparing 3(c) and 3(d), the denoising result obtained
using VIDOLSAT clearly shows lower reconstruction errors than the
result obtained from the highly noisy measurements using VBM4D.

5. CONCLUSIONS

In this work, we presented a novel framework for online video de-
noising. The proposed method uses a temporally sliding window
strategy to extract a small set of noisy video frames at each time
instant, and then generates sequentially a denoised estimate of these
frames with a small and controlled delay (of a few frames), using
an efficient online 3D (overlapping) patch-based denoising scheme.
Our numerical results demonstrate the promising performance of
the proposed method as compared to well-known alternatives such
as adaptive overcomplete dictionary-based denoising, VBM3D,
VBM4D, or 3D DCT-based denoising.
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